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Abstract

Internet of things (IOT) based in-home monitoring systems can passively col-

lect high temporal resolution data in the community, offering valuable insight

into the impact of health conditions on patients’ day-to-day lives. We used this

technology to monitor activity and sleep patterns in older adults recently dis-

charged after traumatic brain injury (TBI). The demographics of TBI are chang-

ing, and it is now a leading cause of hospitalisation in older adults. However,

research in this population is minimal. We present three cases, showcasing the

potential of in-home monitoring systems in understanding and managing early

recovery in older adults following TBI.

Introduction

Inexpensive in-home monitoring technology can be used

to monitor the health of patients in their own homes.1–3

These systems can passively capture millions of observa-

tions over extended durations providing insight into the

effects of health conditions on patients’ daily lives.3–6 This

is unachievable with traditional research or clinical

approaches, which rely on patients attending infrequent

assessments in lab or hospital settings. Sensor data can be

used to derive indicators of health and function by analys-

ing patterns and quantifying levels of activity and sleep.3,4,7

These ‘digital biomarkers’ can be used to track progression

of health conditions, and better target support from health

and social care teams. Passive sensor systems require no

user engagement, so have utility in groups where cognition

affects insight or compliance.

The prevalence of traumatic brain injury (TBI) among

older adults is increasing faster than other age groups,

primarily due to falls.8 Despite this older adult are under-

represented in TBI studies.9,10 Therefore, much is

assumed, but little is known about how TBI affects this

population.10 It is increasingly apparent that age alone is

not synonymous with poor outcomes and factors such

as pre-morbid multimorbidity and frailty influence

recovery.11,12

We present a case-based analysis of activity and sleep

data collected using a sensor system installed in the

homes of three older adults with moderate–severe TBI

(Mayo criteria).13 We show how this data can provide

insight into the effects of TBI in older adults and high-

light the clinical potential of this technology.

Methods

We recruited inpatients aged ≥60 with moderate–severe
TBI from a regional trauma centre. The Mayo criteria13

was chosen to ensure inclusion of patients with definite

TBI. Exclusion criteria included profound extracranial

injury. This was a sub-study of Minder (run by the UK

Dementia Research Institute Centre for Care Research &

Technology), which uses in-home sensors to monitor

older adults living with dementia.

Within 3 weeks from hospital discharge, sensors were

installed in patients’ homes for 6 months. To monitor

changes in patterns of activity, passive infrared sensors

(PIRs) (Fig. 1) were placed in rooms patients used most

often. A pneumatic bed mat (Fig. 1) under the patient’s
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side of the mattress was used to measure time in and out

of bed in conjunction with PIR data as a metric of sleep

activity.

Participants and study partners were called weekly to

corroborate any changes in activity or sleep. This enabled

us to correlate PIR and bed mat data with health-related

events and overall recovery. Assessments of frailty, cogni-

tion and function were performed at study entry, 3 weeks

and 6 months (Fig. 3).

Data analysis

Changes in participants’ patterns of activity and sleep

(post TBI) were mapped by plotting PIR and bed mat

activation over time using Python (Fig. 3). The weekly

average for overnight activity per room was calculated

using the total number of PIR sensor activations from

each monitored room. A room was deemed to have

abnormally high overnight activity if its weekly average

activity was >2.5 standard deviations above the partici-

pants post TBI baseline, calculated as the average

overnight activity from the first 4 weeks. Data were pro-

vided to consenting patients’ healthcare teams if requested

but was not available in real time.

The study has ethical approval granted by the London

– Camberwell St Giles Research Ethics Committee (REC

number: 17/LO/2066).

Results

Case descriptions

P1 is a 68-year-old retail worker, who was injured in a

collision with a cyclist, sustaining a left-sided subdural

haematoma (SDH) with mass effect (). She experienced

contralateral visual disturbance, leg weakness and vertigo,

as well as higher cognitive dysfunction, with deficits in

attention, memory, verbal fluency and visuospatial

processing.

P1 lives with multiple chronic health conditions but is

not frail (Fig. 2). She reported an excellent recovery

(Fig. 2), returning to an active social life and part-time

Figure 1. The passive infrared sensors (PIR) (A) measure light temperature and heat. They sense movement up to 9 meters away from the sensor

with a view angle of 45 degrees up/down and left/right.22 In our study, we obtain maximum sensitivity at around 3 m and have set the ‘off-time’

to 30 sec (sensors detect the prescence or absence of motion every 30 sec). The Withings bed mat (B) passively captures minute-by-minute heart

rate, respiratory rate and movement using pneumatic sensors. The bed mat is waterproof and is placed out of sight underneath the mattress. The

mat was developed in collaboration with sleep physicians at Hôpital B�ecl�ere and validated against polysomnograph.23
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Figure 2. Demographic, injury and clinical information for patients. Montreal Cognitive Assessment (MOCA). Extended Glasgow Outcome Scale

(GOSE).
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employment. Her account of her recovery aligns fully

with the observations from the home monitoring sensors.

For example, her return to work has been mapped clearly

in the PIR and sleep mat data from Week 12 (Fig. 3A).

Bedroom, bathroom and kitchen activity is noted at 6 am

followed by no PIR activation after leaving the house on

workdays (Fig. 3A Week 12).

P2 is an 87-year-old retired healthcare professional who

fell from standing. He presented 12 days later with dys-

phasia and unsteady gait. His CT demonstrated a small

left-sided SDH (Fig. 2).

P2 has a high burden of comorbidity (Fig. 2) and,

according to current literature, may have been expected

to perform poorly following his TBI. However, he

reported a good recovery from his injury (Fig. 2),

resuming premorbid activities including holidays abroad

(Fig. 3B Week 6–8). His reported recovery is corrobo-

rated by swift resumption of consistent patterns of daily

activity throughout the house and time in bed, as cap-

tured by the sensors (Fig. 3B). Of note, in Week 9, P2

had a chest infection requiring antibiotics, during which

the bedroom overnight activity was abnormally high

(bedroom Week 9 PIR count = 12.1 vs. baseline bed-

room PIR count = 8.0). However, there remained con-

sistent daytime and overnight activity and sleep patterns,

with no increased time spent in bed ‘recuperating’

(Fig. 3B Week 9), consistent with P2s resilience to acute

illness.

P3 is a 96-year-old retired businessman who also fell

from standing. His CT head demonstrated a parafalcine

SDH (Fig. 2), and he experienced delirium whilst in

hospital.

P3 had recently been given a probable diagnosis of

mixed Alzheimer’s and vascular dementia. Over the

6-month study, his sleep and behavioural disturbances

worsened, necessitating increased care (Fig. 2).

P3 reported good sleep but the PIR and bed mat data

indicated otherwise (Fig. 3C). Disruptions to sleep and

circadian rhythm are common after TBI, but typically

improve with time.14 However, P3s data paint a picture

of worsening sleep disruption after hospital discharge.

Frequent night-time movements can be seen across multi-

ple rooms not usually accessed at night, for example,

office, consistent with overnight wandering. (Fig. 3C

Week 5–8). For example, weekly overnight office activity

is abnormally high over Weeks 5–8 (office Week 5–8 PIR

count range = 10.1–14.2 vs. Baseline office PIR

count = 5.9), There was also abnormally high weekly

overnight lounge activity from Week 14 (lounge Week

14–27 PIR count range = 1.7–8.3 vs. baseline PIR

count = 0.3), corresponding to when he started sleeping

in the lounge. These behaviours were corroborated by his

wife’s reports.

Discussion

We showcase three cases of older adult TBI, whose post-

discharge period was monitored with an in-home sensor

system. We demonstrate that this technology can provide

high temporal resolution insight into the effect of TBI in

older adults. By mapping and quantifying changes in pat-

terns of activity and sleep over time it may be possible to

derive ‘digital biomarkers’ of clinically significant behav-

iour such as night-time wandering.

Limitations included challenges disarticulating data

belonging to specific individuals in multi-occupant house-

holds. However, the activity of home occupants is inter-

dependent and changes to an individual’s health will

affect the activity patterns of the entire household.15,16

The availability of pre TBI data would increase sensitivity

to detecting stable poor sleep patterns, however we were

still able to detect clinically relevant deterioration, as seen

with P3, even within these limitations. In addition, a sin-

gle metric of sleep activity was derived from the PIR and

bed mat; time in and out of bed and did not include

other metrics of sleep quality such as stages of sleep. Lim-

itations of the study are discussed in greater detail in our

study protocol.17

P3’s case highlights the utility of passive monitoring in

patient groups where impaired insight affects recall. By

monitoring the changes in levels and patterns of bed mat

and PIR activity over time, we mapped the progression of

his nocturnal behavioural disturbance, more accurately

than by self-report alone. Sleep disturbance18 and poor

cognition19 are independent risk factors for falls. Indeed,

P3’s carers reported five falls during the monitoring

period. Making ‘digital biomarkers’ of behaviours that

increase falls risk available in real-time to health and

social care teams as part of ‘hospital at home’ or ‘virtual

ward’ services could enable the swift initiation of inter-

ventions to address a patient’s specific care needs (e.g. a

bed exit alarm, adjustments to medications) whilst also

monitoring their impact.

The data provided by the sensors combined with self-

reported recovery emphasises that age alone is a poor pre-

dictor of prognosis. Age, multimorbidity and frailty do

not always co-exist20,21 and the recoveries of P1 and P2,

who are older and multimorbid but not frail, exemplify

this point. Larger controlled trials using monitoring tech-

nology could help further define the relationship between

frailty, multimorbidity, age and the impact of TBI.

In summary, we show that data collected from inex-

pensive sensors can map changes in patterns of activity

over time and could be used to derive ‘digital biomarkers’

that offer clinically meaningful insights into the effects of

common health conditions, such as TBI. Such systems

and ‘digital biomarkers’ can be used to track health
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Figure 3. The figures above show 6 months of data passively obtained from infrared sensors (PIRs) and the Withings bedmat. The top three

diagrams show data from the PIR sensor. Each dot represents movement activating a sensor. The different colour represents sensor activation in

different rooms. The y axis shows the week and x axis shows the time of day. The figures are annotated with information obtained from a

weekly phone call with the participant or carer. The bottom three raster plots demonstrate bed occupancy, that is, time spent in bed. The y axis

shows the week and x axis shows the time of day.
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conditions and effects of interventions in the community,

with utility in vulnerable populations where insight is

impaired.
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